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Abstract: In this work, we study a nonlinear p(x)-Kirchhoff equation with Dirichlet

boundary condition:




−∆K
p(x)u+ V (x)|u|p(x)−2u = f(x, u,∇u), in Ω,

u = 0, on ∂Ω.

Using a topological approach based on Galerkin method, we get the existence of strong

generalized solutions and weak solutions. The results obtained in the literature have

been generalized.
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1. Introduction and main results

As we all know, the mechanisms of fluid movement are very important in dealing with the

problem of diffusion. In the study of porous media such as liquids and gases, there is a widely

studied phenomenon called convection. In short, convection occurs when energy is transferred by

moving particles. It mainly occurs when the temperature gradient exceeds a certain threshold.

To study this phenomenon, we have introduced a reaction term f(x, y, z), which depends on the

gradient. On the other hand, we mainly consider the problem involving Kirchhoff type term.

Similarly, the research on Kirchhoff type problems comes from physical applications, which is

related to processes. It is known that Kirchhoff type problems is first studied by Kirchhoff [1] when

he investigated an extension of the D’Alembert wave equation for free vibrations of elastic strings.

In this paper, we study the following kind of p(x)-Kirchhoff type problem with Dirichlet bound-

ary condition, potential term and convection in the reaction term:




−∆K
p(x)u+ V (x)|u|p(x)−2u = f(x, u,∇u), in Ω,

u = 0 on ∂Ω,
(1.1)
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where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, f : Ω×R×RN is a Carathéodory

function, V : Ω̄ → (0,+∞) and p : Ω̄ → (1,+∞) is a Lipschitz function, and satisfies

1 < p− := inf
x∈Ω̄

p(x) ≤ p+ := sup
x∈Ω̄

p(x) < +∞.

∆p(x) denotes the p(x)-Laplace differential operator defined as follows:

∆p(x)u = div(|∇u|p(x)−2∇u) for all u ∈ W
1,p(x)
0 (Ω),

and the Kirchhoff type term is of the following form:

K(p, u) = a− b

∫

Ω

1

p(x)
|∇u|p(x) dx, a, b > 0. (1.2)

Hence, the p(x)-Kirchhoff type operator denoted by ∆K
p(x) is defined as follows:

∆K
p(x) = K(p, u)∆p(x)u =

(
a− b

∫

Ω

1

p(x)
|∇u|p(x) dx

)
div(|∇u|p(x)−2∇u), u ∈ W

1,p(x)
0 (Ω),

where W
1,p(x)
0 (Ω) will be defined in Section 2.

Recently, there have been many studies on the reaction term f(x, y). For example, Fan and

Zhang [2] obtained the existence of weak solutions for a kind of p(x)-Laplace equation; Hamadni,

Harrabi and Mtiri [3] obtained the existence of nontrivial weak solutions of the nonlocal Kirchhoff

equation with perturbation term λ|u|p(x)−2u; Ge, Zhang and Hou [4] obtained the existence of the

Nehari-type ground state solution for a kind of superlinear p(x)-Laplace equations with potential V .

There are also some studies on the gradient dependent reaction term f(x, y, z). Faria, Miyagaki and

Motreanu [5] studied the existence of positive solutions for a class of quasilinear elliptic equations

with Dirichlet boundary conditions; Gasiński and Júnior [6] studied the existence of weak solutions

for a kind of quasilinear elliptic equations with double phase phenomenon and a reaction term

depeding on the geadient. Especially, when V (x) = 0 in (1.1), Vetro [7] studied a special kind

of (1.1) and obtained some results by using topological approach and the theory of operators of

monotone type. As pointed out by Vetro, the work obtained in [7] is the first attempt to consider

(1.2) with a convection reaction.

Since problem (1.1) has a reaction relying on the gradient and a variable potential, we cannot

use the classic variational methods (such as mountain pass theorem) in the analysis of it. But

we can borrow the idea of [7], that is using a topological method, which is based on fixed-point

arguments and the theory of operators with monotype features.

We call that u ∈ W
1,p(x)
0 (Ω) is a weak solution to problem (1.1) if

⟨−∆K
p(x)u, v⟩+

∫

Ω
V (x) |u|p(x)−2 uvdx =

∫

Ω
f(x, u,∇u)vdx.

We know that if u ∈ W
1,p(x)
0 (Ω) is a weak solution to problem (1.1), then there exists {un} ⊆

W
1,p(x)
0 (Ω) such that:

2
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(1) un ⇀ u in W
1,p(x)
0 (Ω), as n → +∞

(2) −∆K
p un + V (x)|u|p(x)−2u− f(x, un,∇un) ⇀ 0 in W−1,p

′
(x)(Ω), as n → +∞

(3) limn→+∞⟨−∆K
p un, un − u⟩ = 0.

Such a kind of solution (u ∈ W
1,p(x)
0 (Ω) satisfying (1), (2), (3) above), is known as a strong

generalized solution to problem (1.1), by the terminology of Motreanu [8]. Therefore, the set of

weak solutions to (1.1) is a subset of the generalized solutions to (1.1)(it follows choosing {un} ⊆
W

1,p(x)
0 (Ω) with un := u for all n ∈ N).
Therefore, it becomes a natural question to derive the weak solution from the strong generalized

solution. Vetro address this question in [7] with condition:

∫

Ω
|∇un|p(x)dx �

a

b
as n → +∞, {un} ⊆ W

1,p(x)
0 (Ω). (1.3)

First of all, we make the assumptions about the exponent p.

(p) There exists ξ0 ∈ RN \ {0} such that for all x ∈ Ω the function px : Ωx → R defined by

px(z) = p(x+ zξ0) is monotone, where Ωx := {z ∈ R : x+ zξ0 ∈ Ω}.
(p′) p ∈ C(Ω) is finite with p+ < 2p−.

Hypothesis (p) is significant, since according to [9], which leads to the Rayleigh quotient

λ = inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

1
p(x) |∇u|p(x)dx∫

Ω
1

p(x) |u|p(x)dx
> 0. (1.4)

Throughout this paper, we assume that the nonlinear term f : Ω×R×RN → R is a Carathédory

function. The following hypotheses are required in the superlinear case.

(f) f : Ω× R× RN → R is a Carathédory function such that the following two case hold:

(i) there exist σ ∈ Lα′(x)(Ω), 1 < α(x) < p∗(x) :=




Np(x)
N−p(x) if p(x) < N

+∞ otherwise
, and c > 0 such that

|f(x, y, z)| ≤ c(σ(x) + |y|α(x)−1 + |z|
p(x)

α′(x) ), for a.e. x ∈ Ω, all y ∈ R and z ∈ RN ;

(ii) there exist a0 ∈ L1(Ω) and b1, b2 ≥ 0 such that

|f(x, y, z)y| ≤ a0(x) + b1|y|p(x) + b2|z|p(x), for a.e. x ∈ Ω, all y ∈ R and z ∈ RN .

We assume that the potential V satisfies the following hypotheses:

(V) V ∈ C(RN ) and 0 < V − := inf
x∈RN

V (x) ≤ sup
x∈RN

V (x) := V + < +∞.

We are now in a position to state the main results of this paper.

Theorem 1.1. If hypotheses (V), (p) and (f) hold, then problem (1.1) admits a strong generalized

solution u ∈ W
1,p(x)
0 (Ω).

Theorem 1.2. If hypotheses (V), (p′) and (f) hold, then problem (1.1) admits a strong generalized

solution u ∈ W
1,p(x)
0 (Ω).
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Theorem 1.3. Let u ∈ W
1,p(x)
0 (Ω) be a strong generalized solution to problem (1.1), associated

to the sequence {un}n∈N ⊆ W
1,p(x)
0 (Ω) satisfying (1.3). If hypotheses (V) and (f) hold, then u ∈

W
1,p(x)
0 (Ω) is a weak solution of problem (1.1).

Remark 1.4. When V (x) ≡ 0, Vetro [7] first studied a kind of problem (1.1) with convection and

obtained some existence results for two notions of solutions, by applying a topological method. Since

problem (1.1) involves variable potential V (x), it is somewhat difficult to deal with the existence of

solutions for problem (1.1). To conquer this difficulty, we need some conditions on V (x), and using

the method in [7], we establish some results for problem (1.1). Hence, the obtained results of this

paper can be seem as some generalization of relative works in [7].

This paper is organized as follows. In Section 2, we introduce some preliminaries konwledge of

variable exponent spaces and give some preliminary lemmas facts which are needed to prove our

results. And in Section 3, we present the proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3.

2. Preliminaries

In order to discuss problem (1.1), we first recall some necessary facts on spaces Lp(x)(Ω) and

W 1,p(x) which are called variable exponent Sobolev space. Let

C+(Ω) = {p(x) : p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω}.

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : u is a measurable real− valued function such that

∫

Ω
|u|p(x)dx < ∞

}
,

endowed with the norm

∥u∥Lp(x)(Ω) := |u|p(x) := inf

{
λ > 0 :

∫

Ω

����
u(x)

λ

����
p(x)

dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(x) is defined by

W 1,p(x) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

whose norm is given by

∥u∥W 1,p(x) = |u|p(x) + |∇u|p(x). (2.1)

Lemma 2.1.[7] Let X,Y be two Banach space with X ⊆ Y . If X is dense in Y and the embedding

is continuous, then the embedding Y ∗ ⊆ X∗ is also continuous. Additionally, the reflexive of X

implies that Y ∗ is dense in X∗.

Proposition 2.2. (Poincaré Inequality) [10] There is a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈ W
1,p(x)
0 (Ω), (2.2)

where W
1,p(x)
0 (Ω) is the W 1,p(x)-norm closure of C∞

0 (Ω).
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Remark 2.3. By Proposition 2.2, we know that |∇u|p(x) and ∥u∥W 1,p(x)(Ω) are equivalent norms

on W
1,p(x)
0 (Ω), so we can replace ∥u∥W 1,p(x)(Ω) by |∇u|p(x).

Proposition 2.4. [11] The functional ρp(u) : L
p(x)(Ω) → R defined by

ρp(u) =

∫

Ω
|u|p(x)dx,

has the following properties:

(i). |u|p(x)(Ω) < 1(= 1, > 1) ⇔ ρp(u) < 1(= 1, > 1);

(ii). if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρp(u) ≤ |u|p
+

p(x);

(iii). if |u|p(x < 1, then |u|p
+

p(x) ≤ ρp(u) ≤ |u|p
−

p(x).

Remark 2.5. The following inequality can be calculated from Proposition 2.4:

|u|p
−

p(x) − 1 ≤ ρp(u) ≤ |u|p
+

p(x) + 1. (2.3)

Moreover, from (2.3), we have the following results by some easy calculations,

||u|p(x)−1|(p
′)−

p′(x) ≤
∫

Ω
(|u|p(x)−1)

p(x)
p(x)−1dx+ 1 ≤

[
|u|p

+

p(x) + 1
]
+ 1,

where we use the fact that u ∈ Lp(x)(Ω) implies that |u|p(x)−1 ∈ Lp′(x)(Ω). Thus, we can obtain that
���|u|p(x)−1

���
p′(x)

≤ 2 + |u|p
+

p(x). (2.4)

Following a similar argument, we can obtain the following inequality:
����|∇u|

p(x)

α′(x)

����
α′(x)

≤ 2 + ||∇u||p
+

p(x), α ∈ C(Ω) with α(x) > 1 for all x ∈ Ω. (2.5)

Proposition 2.6. [7] Let (X, ∥ · ∥)X be a normed finite-dimensional space and let T : X → X∗ be

a continuous map. If there exists some R > 0 such that

⟨T (v), v⟩ ≥ 0, ∀ v ∈ X with ∥v∥X = R,

then the equation T (v) = 0 has a solution u ∈ X such that R ≥ ∥u∥X .

Proposition 2.7. [11] The conjugte space of Lp(x)(Ω) is Lp′(x)(Ω), where 1
p(x) +

1
p′(x) = 1. For any

u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have
����
∫

Ω
uvdx

���� ≤
(

1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x).

Next, we give some lemmas needed to prove our results.

Lemma 2.8. If hypothesis (f)(i) holds, then for all u, v ∈ W
1,p(x)
0 (Ω), there is some c > 0 such

that the following inequality holds:
����
∫

Ω
f(x, u,∇u)vdx

���� ≤ 2c|v|α(x)
[
|σ|α′(x) + |u|α+

α(x) + |∇u|p
+

p(x) + 4
]
.
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Proof . For all u, v ∈ W
1,p(x)
0 (Ω) and some c > 0, by (f)(i), Hölder inequality, (2.4) and (2.5), we

can obtain
����
∫

Ω
f(x, u,∇u)vdx

���� ≤ c

∫

Ω

[
|σ(x)|+ |u|α(x)−1 + |∇u|

p(x)

α′(x)

]
|v|dx

≤ 2c|v|α(x)

[
|σ|α′(x) +

���|u|α(x)−1
���
α′(x)

+

����|∇u|
p(x)

α′(x)

����
α′(x)

]
. (2.6)

The proof is completed.

Now, we define N∗
f : W

1,p(x)
0 (Ω) ⊂ Lα(x)(Ω) → Lα′(x)(Ω) to be the Nemitsky map corresponding

to the Carathéodory function f , that is

N∗
f (u) = f(x, u,∇u), ∀ u ∈ W

1,p(x)
0 (Ω).

By (f)(i) (see[12]), we know that N∗
f is bounded and continuous. Afterwards, we consider the

operator Nf : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) defined by

Nf = i∗ ◦N∗
f ,

where i∗ : Lα′(x)(Ω) → W−1,p′(x)(Ω) is a continuous embedding (see Lemma 2.1). It follows that

Nf is bounded and continuous.

On the other hand, by Lemma 2.8, for all v ∈ W
1,p(x)
0 (Ω) and some c > 0, we have

∥Nf (v)∥W−1,p′(x)(Ω) ≤ 2c
[
|σ|α′(x) + |v|α+

α(x) + |∇v|p
+

p(x) + 4
]
.

Since W
1,p(x)
0 (Ω) is a separable Banach space, we can find a Galerkin basis {Xn} ⊂ W

1,p(x)
0 (Ω)

such that

(i) dim(Xn) < +∞ for all n ∈ N;
(ii) Xn ⊂ Xn+1 for all n ∈ N;
(iii)

∪∞
n=1Xn = W

1,p(x)
0 (Ω).

Lemma 2.9. Let {Xn} be a Galerkin basis of W
1,p(x)
0 (Ω). If hypotheses (p), (V) and (f) hold, then

for any n ∈ N, we can find un ∈ Xn such that

⟨−∆K
p un, v⟩+

∫

Ω
V (x)|un|p(x)−2unvdx =

∫

Ω
f(x, un,∇un)vdx, ∀ v ∈ Xn. (2.7)

Proof . Fixed n ∈ N, let Tn : Xn → X∗
n be the operator defined by

⟨Tn(u), v⟩ = ⟨−∆K
p u, v⟩+

∫

Ω
V (x)|u|p(x)−2uvdx−

∫

Ω
f(x, u,∇u)vdx, ∀ v ∈ Xn.

By (1.4), hypotheses (f)(ii) and (V), we can get

⟨−Tn(v), v⟩ =

(
b

∫

Ω

1

p(x)
|∇v|p(x)dx− a

)∫

Ω
|∇v|p(x)dx

6
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−
∫

Ω
V (x)|v|p(x)dx+

∫

Ω
f(x, v,∇v)vdx

≥
(
b

∫

Ω

1

p(x)
|∇v|p(x)dx− a

)∫

Ω
|∇v|p(x)dx

−
∫

Ω
V (x)|v|p(x)dx−

∫

Ω
|f(x, v,∇v)v|dx

≥ b

p+

(∫

Ω
|∇v|p(x)dx

)2

− a

∫

Ω
|∇v|p(x)dx− λ−1V +

∫

Ω
|∇v|p(x)dx

−
∫

Ω
|a0(x)|dx− b1

∫

Ω
|v|p(x)dx− b2

∫

Ω
|∇v|p(x)dx

≥ b

p+
ρ2p(∇v)− aρp(∇v)− λ−1V +ρp(∇v)

−∥a0∥L1(Ω) − b1λ
−1ρp(∇v)− b2ρp(∇v). (2.8)

If ρp(∇v) > 1, then from (2.8), we have

⟨−Tn(v), v⟩ ≥
b

p+
ρ2p(∇v)−

(
a+ λ−1V + + b1λ

−1 + b2 + ∥a0∥L1(Ω)

)
ρp(∇v)

=

[
b

p+
ρp(∇v)−

(
a+ λ−1V + + b1λ

−1 + b2 + ∥a0∥L1(Ω)

)]
ρp(∇v),

⇒ ⟨−Tn(v), v⟩ ≥ 0 if ρp(∇v) ≥ p+

b

(
a+ λ−1V + + b1λ

−1 + b2 + ∥a0∥L1(Ω)

)
.

Fixed R > max

{[
p+

b

(
a+ λ−1V + + b1λ

−1 + b2 + ∥a0∥L1(Ω)

)]1/p−
, 1

}
, then for any v ∈ Xn with

∥v∥ = R, we have

⟨−Tn(v), v⟩ ≥ 0.

Combining Proposition 2.6, the equation Tn(u) = 0 has a solution un ∈ Xn. The proof is

completed.

Remark 2.10. From (2.3), we can know that any S ⊆ W
1,p(x)
0 (Ω) is bounded if there exists a

constant C > 0 such that ρp(∇u) ≤ C for all u ∈ S.

Let {un} ⊂ ∪∞
n=1Xn be the sequence mentioned in the proof of Lemma 2.9. Then, we have the

following lemma which is used to prove that the boundedness of such a sequence in W
1,p(x)
0 (Ω).

Lemma 2.11. If hypotheses (p), (f) and (V) hold, then {un} ⊂ ∪∞
n=1Xn is bounded in W

1,p(x)
0 (Ω).

Proof . If ρp(∇un) ≤ 1 for all n ∈ N, by Remark 2.10, we know that the sequence {un} is

bounded in W
1,p(x)
0 (Ω). Therefore, we assume that there exists some n ∈ N such that ρp(∇un) > 1.

Replacing v in (2.7) with un, combining (1.4) and hypothesi (f)(ii), we get

b

p+
ρ2p(∇un) =

b

p+

(∫

Ω
|∇un|p(x)dx

)2

≤ a

∫

Ω
|∇un|p(x)dx+

∫

Ω
V (x)|un|p(x)dx−

∫

Ω
f(x, un,∇un)undx

≤ aρp(∇un) + λ−1V +

∫

Ω
|∇un|p(x)dx+

∫

Ω
|f(x, un,∇un)un|dx

7
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≤ aρp(∇un) + λ−1V +ρp(∇un) +

∫

Ω

[
|a0(x)|+ b1|un|p(x) + b2|∇un|p(x)

]
dx

≤
(
a+ λ−1V + + b1λ

−1 + b2
)
ρp(∇un) + ∥a0∥L1(Ω).

From the above, there is

ρp(∇un) ≤
p+

b
(a+ λ−1V + = b1λ

−1 + b2 + ∥a0∥L1(Ω)). (2.9)

Thus, from (2.9) and ∥∇un∥Lp(x)(Ω) ≤ 1 for all n ∈ N, we have

ρp(∇un) ≤ max

{
p+

b

(
a+ λ−1V + + b1λ

−1 + b2 + ∥a0∥L1(Ω)

)
, 1

}
,

which implies that {un} ⊂ ∪∞
n=1Xn is bounded in W

1,p(x)
0 (Ω). The proof is completed.

Lemma 2.12. Let {Xn} be a Galerkin basis of W
1,p(x)
0 (Ω). If hypotheses (p′), (V) and (f) hold,

then for any n ∈ N, we can find un ∈ Xn such that

⟨−∆K
p un, v⟩+

∫

Ω
V (x)|un|p(x)−2unvdx =

∫

Ω
f(x, un,∇un)vdx, ∀ v ∈ Xn. (2.10)

Proof . Similar to the proof of Lemma 2.9, fixed n ∈ N, we consider that the operator Tn : Xn → X∗
n

defined by

⟨Tn(u), v⟩ = ⟨−∆K
p u, v⟩+

∫

Ω
V (x)|u|p(x)−2uvdx−

∫

Ω
f(x, u,∇u)vdx, ∀ v ∈ Xn.

By (1.3), hypotheses(f)(ii) and (V), we have

⟨−Tn(v), v⟩ ≥
b

p+

(∫

Ω
|∇v|p(x)dx

)2

− (a+ b2)

∫

Ω
|∇v|p(x)dx

− (b1 + V +)

∫

Ω
|v|p(x)dx− ∥a0∥L1(Ω), ∀ v ∈ Xn.

If ∥v∥ = ∥∇v∥Lp(x)(Ω) > 1, we get

⟨−Tn(v), v⟩ ≥
b

p+
∥v∥2p− − (a+ b2)∥v∥p

+ − ∥a0∥L1(Ω)

− (b1 + V +)max
{
|v|p

+

p(x), |v|
p−

p(x)

}

≥ b

p+
∥v∥2p− −

[
a+ b2 + (b1 + V +)C2 + ∥a0∥L1(Ω)

]
∥v∥p+

=

{
b

p+
∥v∥2p−−p+ − [a+ b2 + (b1 + V +)C2 + ∥a0∥L1(Ω)]

}
∥v∥p+ ,

where C2 = C2(p
−, p+, c1) > 0.

Fixed R > max

{[
b
p+

∥v∥2p−−p+ − (a+ b2 + b1C2 + V +C2 + ∥a0∥L1(Ω))
]1/(2p−−p+)

, 1

}
, then for

any v ∈ Xn with ∥v∥ = R, we have

⟨−Tn(v), v⟩ ≥ 0.

8
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Combining Proposition 2.6, we can deduce that the equation Tn(u) = 0 has a solution un ∈ Xn.

And the proof is completed.

Lemma 2.13. If hypotheses (p′), (f) and (V) hold, then {un} ⊂ ∪∞
n=1Xn is bounded in W

1,p(x)
0 (Ω).

Proof . If ∥∇un∥Lp(x)(Ω) ≤ 1 for all n ∈ N, then the sequence {un} is bounded in W
1,p(x)
0 (Ω).

Therefore, we assume that there exists some n ∈ N such that ∥∇un∥Lp(x)(Ω) > 1. Replacing v in

(2.7) with un, combining (1.4) and hypothesi (f)(ii), we get

b

p+
∥∇un∥2p

−

Lp(x)(Ω)
≤ b

p+

(∫

Ω
|∇un|p(x)dx

)2

≤ a

∫

Ω
|∇un|p(x)dx+

∫

Ω
V (x)|un|p(x)dx−

∫

Ω
f(x, un,∇un)undx

≤
[
a+ b2 +

(
b1 + V +

)
C2

]
|∇un|p

+

p(x) + ∥a0∥L1(Ω). (2.11)

From (2.11), we have

|∇un|p(x) ≤ [a+ b2 + (b1 + V +)C2 + ∥a0∥L1(Ω)]
1/(2p−−p+). (2.12)

Thus, from (2.12) and ∥∇un∥Lp(x)(Ω) ≤ 1 for all n ∈ N, we have

|∇un|p(x) ≤ max
{[

a+ b2 +
(
b1 + V +

)
C2 + ∥a0∥L1(Ω)

]1/(2p−−p+)
, 1
}
.

Hence, {un} ⊂ ∪∞
n=1Xn is bounded in W

1,p(x)
0 (Ω). The proof is completed.

3. Proofs of Main Results

Proof of Theorem1.1. From Lemma 2.13, we see that {un} ⊂ ∪∞
n=1Xn is bounded in W

1,p(x)
0 (Ω).

Since W
1,p(x)
0 (Ω) is a reflexive space, we can assume that there exists u ∈ W

1,p(x)
0 (Ω) such that

un → u in Lα(x)(Ω) and un ⇀ u in W
1,p(x)
0 (Ω). (3.1)

On the other hand, we know that the Nemitsky map is bounded, so we have

{Nf (un)} is bounded in W−1,p′(x)(Ω).

Next, we consider N∗
V : W

1,p(x)
0 (Ω) ⊂ Lα(x)(Ω) → Lα′(x)(Ω) which is defined as:

N∗
V = V (x)|u|p(x)−2u.

By hypothesis (V), (1.4) and Hölder inequality, we have
∫

Ω
V (x)|u|p(x)−2u ≤ V +

∫

Ω
|u|p(x)−1dx

≤ V +

(∫

Ω
|u|p(x)dx

) p(x)−1
p(x)

(∫

Ω
1

p(x)
p(x)−1

) p(x)−1
p(x)

≤ V +[λ−1ρp(∇u)]
p(x)−1
p(x) [µ(Ω)]

p(x)−1
p(x) ,

9
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where µ(Ω) is the Lebesgue measure on RN . Since u ∈ W
1,p(x)
0 (Ω) and Ω is a bounded domain in RN ,

N∗
V is bounded and continuous. Now, we consider the operator NV : W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω)

defined by

NV = i∗ ◦N∗
V .

It follows from Lemma 2.1 that NV is bounded and continuous, that is

{V (x)|un|p(x)−2un} is bounded in W−1,p′(x)(Ω).

The boundedness of the operator −∆K
p(x) implies that

{−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un)} is bounded in W−1,p′(x)(Ω).

By the reflexivity of the space W−1,p(x)(Ω), for some τ ∈ W−1,p(x)(Ω), we have

−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un) ⇀ τ in W−1,p(x)(Ω), (3.2)

which is true at least for a relabeled subsequence of {−∆K
p(x) + V (x)|un|p(x)−2un −Nf (un)}.

Choosing v ∈ ∪∞
n=1Xn, then we can find n(v) ∈ N such that v ∈ Xn(v). By Lemma 2.9, we can

know that (2.7) holds for all n ≥ n(v). Taking the limit as n → +∞ in (2.7), we can obtain

⟨τ, v⟩ = 0, ∀ v ∈ ∪∞
n=1Xn.

Since {Xn} is a Galerkin basis, ∪∞
n=1Xn is dense in W

1,p(x)
0 (Ω), then we deduce that τ = 0. Hence,

from (3.2), we have

−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un) ⇀ 0 in W−1,p(x)(Ω). (3.3)

Next, we replace v with un in (2.7) and get

a

∫

Ω
|∇un|p(x)dx = b

(∫

Ω
|∇un|p(x)dx

)2

−
∫

Ω
V (x)|un|p(x)dx

+

∫

Ω
f(x, un,∇un)dx, ∀ n ∈ N. (3.4)

From (3.3), we have

⟨−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un), u⟩ → 0 as n → +∞. (3.5)

By (3.4) and (3.5), we have

⟨−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un), un − u⟩ → 0 as n → +∞. (3.6)

From Lemma 2.8, replacing u with un and let v = (un − u), for some c > 0 and all n ∈ N, we have

����
∫

Ω
f(x, un,∇un)(un − u)dx

����

10
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≤ 2c|un − u|α(x)
[
|σ|α′(x) + |un|α

+

α(x) + |∇un|p
+

p(x) + 4
]
. (3.7)

By Lemma 2.11, {un} is bounded in W
1,p(x)
0 (Ω), and therefore {un} is bounded in Lα(x)(Ω). Simi-

larly, {|∇un|} is also bounded in Lp(x)(Ω). Thus, from (3.7), we obtain
����
∫

Ω
f(x, un,∇un)(un − u)dx

���� ≤ C1|un − u|α(x), (3.8)

where C1 > 0. By un → u in Lα(x)(Ω) in (3.5), it follows from (3.8) that

lim
n→+∞

∫

Ω
f(x, un,∇un)(un − u)dx = 0. (3.9)

From (3.5), (3.6) and (3.9), we have

lim
n→+∞

⟨−∆K
p(x)un + V (x)|un|p(x)−2un, un − u⟩ = 0. (3.10)

Therefore, from (3.1), (3.5) and (3.10), we can know that u ∈ W
1,p(x)
0 (Ω) is a strong generalized

solution to problem (1.1).

Proof of Theorem1.2. The proof here only requires the replacement of Lemma 2.9 and Lemma

2.11 in the proof of Theorem 1.1 with Lemma 2.12 and Lemma 2.13, respectively. So the proof

here is omitted.

Proof of Theorem1.3. By Hölder inequality and (3.7), we have
����
∫

Ω
V (x)|un|p(x)−2un(un − u)dx

���� ≤ V +

∫

Ω
|un|p(x)−1|un − u|dx

≤ V +
���|un|p(x)−1

���
p(x)

p(x)−1

|un − u|p(x)

→ 0 as n → +∞,

and thus,

lim
n→+∞

∫

Ω
V (x)|un|p(x)−2un(un − u)dx = 0. (3.11)

In addition, since the sequence {un} ⊆ W
1,p(x)
0 (Ω) is bounded, there exists at least a relabeled

subsequence, which we assume that
∫

Ω

1

p(x)
|∇un|p(x)dx ̸= a

b
, ∀ n ∈ N,

and ∫

Ω

1

p(x)
|∇un|p(x)dx → t0 ̸=

a

b
, as n → +∞, for some t0 > 0. (3.12)

From (3.12), we have

a− b

∫

Ω

1

p(x)
|∇un|p(x)dx → a− bt0 ̸= 0.

Hence, we can find δ > 0 such that
����a− b

∫

Ω

1

p(x)
|∇un|p(x)dx

���� ≥ δ > 0, ∀ n ∈ N. (3.13)

11
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Since the sequence {a − b
∫
Ω

1
p(x) |∇un|p(x)dx} is bounded, combining (3.10), (3.11) and (3.12), we

get

lim
n→+∞

⟨−∆K
p(x)un + V (x)|un|p(x)−2un, un − u⟩ = 0. (3.14)

By (3.14), we have

lim
n→+∞

[(
a− b

∫

Ω

1

p(x)
|∇un|p(x)dx

)
⟨−∆p(x)un, un − u⟩+

∫

Ω
V (x)|un|p(x)−2un(un − u)dx.

]
= 0.

(3.15)

Hence, from (3.11) and (3.15), we obtain

lim
n→+∞

⟨−∆p(x)un, un − u⟩ = 0. (3.16)

Since −∆p(x) has the (S)+-property, from (3.16), we have

un → u in W
1,p(x)
0 (Ω).

By the definition of strong generalized solution, we have

−∆K
p(x)un + V (x)|un|p(x)−2un −Nf (un) ⇀ 0 in W−1,p(x)(Ω),

and

−∆K
p(x)u+ V (x)|u|p(x)−2u−Nf (u) = 0,

which implies that u ∈ W
1,p(x)
0 (Ω) is a weak solution to problem (1.1).
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